
202 IEEE COMMUNICATIONS LETTERS, VOL. 4, NO. 6, JUNE 2000

Burst-Based Scheduling Algorithms for Non-Blocking
ATM Switches with Multiple Input Queues

Ge Nong and Mounir Hamdi, Member, IEEE

Abstract—This letter quantitatively evaluates two alternative
approaches to the scheduling of traffic streams in a high-speed
ATM switch with multiple input queues. Specifically, we compare a
previously proposed algorithm, called itparallel iterative matching
(PIM)—which is a cell-based scheduling algorithm—with our
newly proposed algorithm—which is a burst-based variation
of the PIM scheduling algorithm. Extensive simulation results
will demonstrate that burst-based PIM scheduling outperforms
cell-based PIM scheduling under a variety of realistic parameters.

Index Terms—Au: Please supply index terms. E-mail key-
words@ieee.org for a list.

I. INTRODUCTION

I T is shown in Karol et al. [1] that the head-of-line
(HOL) blocking of an input-queued ATM switch limits its

throughput to a maximum of 58.6% under uniform random
traffic, and much lower than that for bursty traffic. One method
for overcoming the HOL blocking problem that is receiving a
lot of attention from both academia and industry ismultiple
input-queued ATM switches. In these switches, each input
maintains a separate queue of cells destined for each output
port. The selection of cells to be transmitted in each time slot
from the input ports to the output ports is accomplished using
a scheduling algorithm which is a key factor in achieving
high-performance using these ATM switches. Several algo-
rithms such as parallel iterative matching (PIM) [2], iSLIP [3],
and RPA [4] have been proposed in the literature.

All of these scheduling algorithms are based on cell-by-cell
scheduling. This can put a burden on the time complexity and
performance of these scheduling algorithms. In particular, these
scheduling algorithms should find a maximum sequence of cell
transmissions across the switch such that at most one cell is
transported from an input port and at most one cell is destined
for an output port, and all this should be done within onesingle
cell transmission time.

On the other hand, traffic streams in the real world are often
characterized as bursty. Most of the application level data units
(ADU), such as a video frame, are too large to be encapsulated
into a single 53-byte ATM cell and must be segmented into a se-
quence of cells in order to be transmitted over ATM networks.
As a result, consecutive arriving cells in a burst are strongly cor-

Manuscript received February 1, 1999. The associate editor coordinating the
review of this letter and approving it f or publication was Prof. V. S. Frost. This
work was supported in part by the Hong Kong Research Grant Council under
the Grant RGC/HKUST 100/92E.

The authors are with the Department of Computer Science, The Hong
Kong University of Science and Technology, Kowloon, Hong Kong (e-mail:
hamdi@cs.ust.hk).

Publisher Item Identifier S 1089-7798(00)05684-2.

related by having the same destination which addresses the same
output of the switch. Our intuitive idea behind this observation
is that the cells of a burst should be scheduled as a whole and
transmitted continuously in an ATM switch rather than schedule
them on a cell-by-cell basis. In other words, the scheduling algo-
rithm should attempt to find a maximum sequence of burst trans-
missions across the switch rather than a maximum sequence of
cell transmissions across the switch.

The main advantage of using a burst-based scheduling al-
gorithm is twofold. First, to an application, the performance
metrics of its data units (i.e., bursts) are more relevant perfor-
mance measures than ones specified by individual cells. Second,
by using burst-based scheduling, we can afford not to perform
scheduling at each single cell transmission time. This is due to
the fact that once the first cell of a burst is scheduled to be trans-
mitted across the switch, all the remaining cells of this burst will
be transmitted in the following time slots without interruption
and without any scheduling decision.

In this letter, we implement a variation of the PIM scheduling
algorithm such that the scheduling decisions are made at the
burst level rather than at the cell level. Then, we quantitatively
compare its performance with the original PIM scheduling al-
gorithm. The results and findings in this letter can be directly
applied to other proposed scheduling algorithms such the iSLIP
[3] and the RPA [4].

II. THE SWITCH MODEL AND PIM SCHEDULING

In this section, we present a brief overview of the ATM
switch architecture and the PIM scheduling algorithm. Inter-
ested readers may refer to [2], [5] for further details.

A. The Switch Model

The ATM switch under consideration is an non-
blocking switch. Each input queue of the switch is a random
access buffer. This random access buffer can be viewed as
FIFO queues, each of which is used to store the cells that are
destined for one of the output ports. The architecture of this
switch is shown in Fig. 1. The first cell in each queue can be se-
lected for transmission across the switch in each time slot, with
the following constraints:

1) At most one cell from any of the queues in an input
port can be transmitted in each time slot.

2) At most one cell could be received by a single output port
in each time slot.

Two criteria must be considered when designing the switch:
1) the switch must route as many cells as possible to maxi-
mize the throughput and 2) the switch must solve the output

1089–7798/00$10.00 © 2000 IEEE

NONG AND HAMDI: SCHEDULING ALGORITHMS FOR NON-BLOCKING ATM SWITCHES 203

Fig. 1. Architecture of a multiple-input queues ATM switch.

contention problem. As a result, the switch scheduling algo-
rithm that decides, for each time slot, which inputs transmit their
queued cells to which outputs is of paramount importance. One
such effective algorithm is termedparallel iterative matching
[2].

B. Parallel Iterative Matching (PIM)

Andersonet al. [2] proposed an efficient scheduling algo-
rithm calledparallel iterative matching(PIM) which uses par-
allelism, randomness, and iteration to find a maximal matching
between the inputs that have queued cells for transmission and
the outputs that have queued cells (at the inputs) destined for
them. For more details, please refer to [2]. It was shown through
analytical modeling and computer simulations, that with as few
as 4 iterations, the throughput of a PIM switch exceeds 99% [5]

III. T HE BURST-BASED PIM (BPIM)

One drawback of the PIM algorithm is that it should get ex-
ecuted and produce results (i.e., maximal matching) within the
time it takes to transmit one ATM cell. For example, at 1-Gb/s
link speed, this time is less than 0.5s. In particular, for large
switch sizes and using a large number of PIM iterations, it is dif-
ficult to produce results within this short time even when using
expensive state-of-art microprocessors or special-purpose hard-
ware.

Motivated by the above observation and given the fact that
ATM traffic is bursty and correlated in nature, we propose a vari-
ation of the PIM algorithm, denoted burst-based PIM (BPIM),
that performs scheduling at the burst level rather than at the cell
level. Each burst of cells participates during the scheduling only
when the burst head cell is at the HOL position. Once a matching
between an input and an output is set up to transmit the head cell
of a HOL burst, that matching will bevalid until all cells of this
HOL burst have been transmitted.

Burst-Based PIM Algorirhm:

1) Keep all the matchings in the last time slot which are
still beingvalid (e.g., the last cell of the burst did not get
transmitted yet) at the current time slot unchanged.

2) Each unmatched input sends a request with a given pri-
ority to every output for which it has a bufferedhead cell
of the HOL burst.

3) If an unmatched output receives any requests, it chooses
thehighest priorityone to grant.

4) If an input receives any grants, it chooses thehighest pri-
ority one to accept and notifies that output.

TABLE I
PARAMETERSUSED IN SIMULATION EXPERIMENTS

Fig. 2. The 2-MMBP bursty traffic model.

5) Iterate steps 2–4 until a maximal matching is found or
until a fixed number of iterations is performed.

Step 1 of the BPIM guarantees that all cells of a burst will
be transmitted across the switch without any interruption. In
particular, the probability that a large number of HOL bursts
complete their transmissions at the same time slot is very low
especially when the traffic load is high. As a consequence,
steps 2–4 are performed only on a subset of the inputs and
outputs which is one major advantage of burst level scheduling
over cell level scheduling. Hence, less iterations would be
required to find amaximal matching among the smaller set
of unmatched inputs/outputs. The priority in steps 2–4 can
be defined elaborately. For example, we choose the priority
according to the length of the burst such assmallest burst first
(SBF) or largest burst first(LBF). For comparison purposes,
we also use arandom select(RND) priority.

IV. SIMULATION RESULTS

To investigate how much the original PIM algorithm can take
advantage from the burst-based scheduling concept, a series of
simulations were designed and carried out. Table I gives a sum-
mary of the parameters used in the simulation experiments. The
bursty traffic that arrives at each input is modeled by a 2-states
Markov Modulated Bernoulli Process (2-MMBP) and is illus-
trated by Fig. 2. The traffic sources alternate between active (1)
and idle (0) periods and the mean time interval that the traffic
source is being active or is being idle are exponentially dis-
tributed with values of and , respectively
[6]. When the traffic source is active, a cell is generated. The
mean load offered by a 2-MMBP with parametersand is
thus . A burst consists of the cells gen-
erated by the consecutive active states. Once the traffic load
and the mean burst sizeare given, and can be expressed
as functions of and as follows:

In this letter we focus our attention on: 1) Finding themean
burst delay. As we mentioned earlier such a parameter is more
relevant to a network application—it could be the delay of an
ADU—than the mean cell delay which is one frequent parame-
ters used in evaluating ATM scheduling algorithms [2], [5]. The

204 IEEE COMMUNICATIONS LETTERS, VOL. 4, NO. 6, JUNE 2000

(a)

(b)

Fig. 3. The mean burst delay/probability of deadline missing as functions of
the mean traffic loads and mean burst size for BPIM and PIM scheduling.

burst delayis defined as the time interval between the appear-
ance of the first cell of the burst at the switch’s input link and the
arrival of the last cell of the burst at the switch’s output link. 2)
Finding the probability that a burst will miss its assigned dead-
line. In our simulations, a burst’s assigned deadline is set to be
10 times of the mean burst size. (We have tested other values
that lead to the same conclusion)

Fig. 3(a) and (b) shows the mean burst delay/probability of
deadline missing as a function of mean traffic load with mean
burst lengths from 1 to 64 cells, for a 1616 switch. An inter-
esting observation is that the performance of the BPIM sched-
uling algorithm is insensitive to the iteration number, especially
when the mean burst length is large. This is one major advan-
tage of BPIM scheduling over the PIM scheduling algorithm as
it does not require expensive high-performance microprocessors
to be executed on time. We can see that the various curves for
the BPIM scheduling algorithm are almost clustered together
under all mean burst lengths, which indicates that one iteration
is enough for the BPIM scheduling algorithm to find amaximal
matching under any traffic load.

The curves of 1-iteration of the BPIM scheduling algorithm
are very close to the curves of the 3-iteration PIM scheduling
algorithm. This advantage of burst-based scheduling can be
explored to design large PIM switches operating at extremely
high speeds where the time slot is too short to execute the PIM

Fig. 4. The mean burst delays for the BPIM scheduling when it is invoked
every 2 iterations. Switch size= 16, burst size= 16.

scheduling with multiple iterations. We also observed that for
a 16 by 16 switch under a traffic with a mean burst length
of 16 cells, the maximum throughput using 1-iteration PIM
scheduling was around 0.6 (exactly 0.63 [5]) and the maximum
throughput using 1-iteration BPIM scheduling exceeded 0.9.

As illustrated above, if the ATM switch links are operating at
a very high speed, one way of being able to execute the sched-
uling algorithm on time (i.e., within one cell transmission time)
and still get reasonable performance is to use burst-based sched-
uling with onesingle iteration. An alternative way of solving
the same problem is to execute (i.e., invoke) the BPIM sched-
uling algorithm every few cells transmission time slots rather
than every single cell transmission time slot, and then iterate it
more than once (e.g., 2 iterations) to get a better matching be-
tween the inputs and the outputs. Fig. 4 illustrates this strategy.
As can be seen from the figure, if we invoke the BPIM sched-
uling algorithm every two-cell transmission time and iterate it
twice, we still get reasonably good performance.

V. CONCLUSION

We proposed a variation of the PIM algorithm implemented
on theAN2 switch [2]. Our algorithm performs scheduling at
the burst level rather than at the cell level for the following rea-
sons: 1) It is more suitable for providing quality of service for
bursty applications; and 2) there is no need for expensive mi-
croprocessors to be used for the execution of these algorithms
since 1-iteration of this algorithm is sufficient to achieve good
performance.

REFERENCES

[1] M. Karol, M. Hluchyj, and S. Morgan, “Input versus output queueing
on a space division packet switch,”IEEE Trans. Commun., vol. 35, pp.
1347–1356, Dec. 1987.

[2] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High-speed
switch scheduling for local-area networks,”ACM Trans. Computer Syst.,
vol. 11, no. 4, pp. 319–352, Nov. 1993.

[3] N. Mckeown, P. Varaiya, and J. Walrand, “Scheduling cells in an input-
queued switch,”Electron. Lett., vol. 29, no. 25, pp. 2174–2175, 1994.

[4] M. G. A. Marsan, A. Bianco, and E. Leonardi, “RPA: A simple efficient
,and flexible policy for input buffered ATM switches,”IEEE Communi-
cations Lett., vol. 1, pp. 83–86, May 1997.

[5] G. Nong, J. K. Muppala, and M. Hamdi, “Analysis of nonblocking ATM
switches with multiple input queues,”IEEE/ACM Trans.Networking,
vol. 7, pp. 60–74, Feb. 1999.

[6] A. Adas, “Traffic models in broadband networks,”IEEE Commun. Mag.,
vol. 35, no. 7, pp. 82–89, July 1997.

